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Non-Linear Theory for the Deformation of Pre-Stressed

Circular Plates and Rings

1. Introduction

It has been conjectured by Professor J.J. Stoker that

solutions to non-linear elasticity problems are generally

smoother in some sense than solutions to the corresponding

linear problems. More specifically, if the solution to the

linear problem has a singularity, the conjecture is that the

solution to the non-linear problem will in many cases not have

a singularity. Professor Stoker suggested that pre-stressed

circular plates and rings would be examples of this phenom-

enon. It was this suggestion which led to the investigation

presented here.

It is known that in the linear theory under the assump-

tion of plane stress if a circular plate or ring is pre-

stressed by slitting it and inserting a wedge or by deleting

a wedge and welding the ends together, then the stress normal

to a plane through the axis has a singularity at the center

in the case of the plate, and in the case of the ring this

stress on the inner curved lateral surface goes to infinity

as the inner radius goes to zero. This is presented for the

plate in [i], and it can be seen in the case of the ring

from [2].

Since plane strain problems are more convenient in the

non-linear theory than plane stress problems, we make here a
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comparison between the plane strain results of the two theories.

In addition we derive the circular plate and ring into which

the pre-stressed circular plate and ring respectively, deform

when hydrostatic pressures are applied to their curved lateral

surfaces. In the case of the ring different hydrostatic pres-

sures are permitted on the two curved lateral surfaces. We

also observe how the stress normal to a plane through the axis

as computed from the non-linear theory reduces to that of the

linear theory when the pre-stressing and applied hydrostatic

pressures are small.

In addition to imposing the equilibrium equations and

using the stress-strain laws to obtain boundary conditions, we

require that the Jacobian of the deformation is positive, ex-

cept at isolated points or curves, for both the linear and

non-linear treatments. This is a natural condition in the

non-linear theory, but it is usually omitted in the linear

theory since in deriving the linear theory it is assumed that

the displacements and their derivitlves are small, making the

condition superfluous. However, for the linear problems con-

sidered here, there are arbitrarily small values of certain

strain and stress parameters for which the Jacobian is not

positive for some values of other parameters. This can happen

since the assumption of small derivatives of displacements is

violated for some values of the parameters in the problem.

Hence the positive Jacobian condition is not superfluous in

the linear treatment of these problems.
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For the pre-stressed circular plate it is shown that the

stress normal to a plane through the axis is finite, although

large, at the Center when the non-llnear theory is used. When

the linear theory is used, there does not exist a pre-stressed

plate off the type considered here obtained by deleting a wedge,

but, when the plate is pre-stressed by inserting a wedge, the

stress under consideration is infinite at the center of the

plate. Thus the conjecture is confirmed in this instance.

For the type of pre-stressed circular ring considered

here letting the inside radius go to zero after the pre-stress-

Ing is fixed is not permitted in the non-linear theory if the

ring is pre-stressed by inserting a wedge, and it is not per-

mitred in any case in the linear theory. It is the positive

Jacoblan condition which prohibits letting the inside radius

go to zero. Hence no comparison of limits for the two theories

is possible for any fixed pre-stresslng. However, in the non-

linear theory when the limit of the stress under consideration

can be taken, it is finite.

It is shown that the discrepancy between the linear and

non-llnear theory results is due to the approximation

r _ = 1 + _ log r .If r 2 _ r _r I _0f°r some constants rl,r 2

the approximation is arbitrarily good for lel small enough.

However, if e is fixed, the approximation becomes arbitrarily

bad as r--_ 0 no matter how small is the value of I_I •

A special strain energy density is used in deriving the

non-llnear theory results. No approximations are made in the



non-llnear theory. The material described by this strain energy

density function is homogeneous and Isotroplc, and the strain

energy density agrees for small strains with that of the linear

theory.

2. The Non-Linear Theory

The notation used here is that of Fritz John [3]. We

simply llst the desired results without proof. Consider a fixed

rectangular Cartesian reference frame X . A particle at the

point (Xl,X2,X 3) in the undeformed body goes to a point

(_l,X2,X3) in the deformed body. We think of _i as a func-

tion of the variables

(2.l)

xj and let

PlJ = _j

Let W be the strain energy density function of the mate-

rial. W is taken to be a function of the variables x i and

PlJ ' and we let

_W

(2.2) qi J = apl'--_"

Then from [3] the equilibrium equations are

(2.3) .-_

If the body forces are zero.

used.

= 0

The usual sumation convention is
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Let _ = (tl,t2,t 3) be the surface traction vector

acting on the boundary of the body where ti is given in

terms of force per unit deformed area. Then from [3]

dS

(2._) t i _ qljnj_-_

where (nl,n2,n 3) is the unit outer normal vector to the

undeformed boundary and dS and d_ are the elements of

area on the undeformed and deformed boundaries respectively.

Let p be the matrix (pij) , and let c be the unique

rotation matrix such that c*p is symmetric and positive de-

finite (* denotes the transpose). Such a rotatlon matrlx c

exists if det p _ 0 which we now assume. Then c is called

the local rotation matrix since c rotates the directions of

principal extension in the undeformed body into those in the

deformed body (see discussion of c in [4]). Hence we list

(2.5) c*c = 1 , det c = 1 ,

de flnite.

c*p is symmetric and positive

It can be shown that c*p = _ , the symmetric positive

definite square root matrix of p*p . For the strain matrix

q we use

(2.6) u - c*p- 1 = _- i .



Then the eigenvalues of G are the stationary values of

d's/ds - 1 where ds and d_ are arc length in the unde-

formed and deformed bodies respectively.

For the strain energy density function W we choose

7, ]2 2](2.7) w = _ [q +_[n

where _ and _ are the Lam_ constants and the square

bracket denotes the trace of the matrix. W agrees for

small strains with the strain energy density of the linear

theory for a homogeneous Isotropic material.

From [4] we have

(2.8) qlj = (_,[_]- 2_)c±j + 2_plj .

3. Tensor Formulation

Since we will be working in curvilinear coordinates

(cylindrical coordinates), we introduce tensor methods for

convenience. Let el,e2,e 3 be curvilinear coordinates such

that det (_xi/Se j) > 0 . In the table below the left and

right columns present the notation used for the X-components

and e-compoents of the same covarient tensor.
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X-components e-components

5ij giJ

_i ui

PiJ PiJ

cij Cij

_iJ Eij

qiJ QiJ

ti T i

n i N i

We define the quantities giJ by (giJ) = (gij)-I

use the quantities giJ and giJ to lower and raise the

indices of the e-components of tensors in the usual way

(i.e. pi gikp gjkPik,J = kJ = etc.). Then the results of

section 2 become the following:

and

(3.1) PiJ = uilj

where lj denotes covarient differentiation with respect to

ej using the quantities giJ as the components of the metric

tensor

3W

(3.2) Qij --

(3.3) QiJlj = 0
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(3.4)
T i = QiJNj dS

dN

(3.5)
CklCkJ = 6j , det (Cij) > O, (CkiPkj)is

positive definite

symmetric and

(3.6) EiJ = CkIpkj - giJ

EIEJ+ _E_E j(3.7) W = _ i J

(3.8)
QiJ = (AE_ - _)C lj + _piJ

4. The Pre-Stressed Ring under Hydrostatic

Pressures (Non-Linear)

It will be convenient to use cylindrical coordinates

r,e,Z given by x I = r cos @ , x 2 = r sin e , x 3 = Z . At

first consider the part of a circular ring which in the unde-

formed state occupies the region rI _< r --•r2 ' _i --• 8 _• a 2 ,

IZI _< h . We ask if for each choice of the constants e > -i ,

P1 ' P2 ' rl ' r2 ' there is a function f(r) independent of

_l and a 9 such that the deformation

(4.1) Xl = f(r) cos (i + _)e, _2 = f(r) sin (i + e)8, _3 = Z

has positive Jacobian and satisfies the equilibrium equations

(3 _.3-)#_,wlth
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hydrostatic pressures of _PI and _P2 applied to the

boundaries r = rl,r 2 respectively. The units off _P1

and _aP 2 are force per unit deformed area. We will show

that the answer to this question is yes, if P1,P2,¢, and

rl/r 2 are restricted suitably, and that the force distri-

bution on the surfiaces e = al,a 2 is normal to the de-

formed surfaces. Hence when _ < 0 we can obtain a stress-

ed ring with hydrostatic pressures of _PI and 2_P 2 on

the inner and outer curved lateral surfaces respectively by

weldin_ together two such pieces. Suitable pieces would be

one for which a I = 0,5 2 = 2_ and one for which a I = 2_,

_2 = 2_/1+_ . Also when s _ 0 a stressed ring with

hydrostatic pressures of _P1 and _P2 on the inner and

outer curved lateral surfaces respectively can be obtained

by welding together the ends of the piece for which al = O,

_2 = 2_/1+¢ . If we take P1 = P2 = 0 , we obtain what we

are calling a pre-stressed ring. If we take P1 _ 0 or

P2 % 0 , we obtain the ring into which the pre-stressed

ring will deform under hydrostatic pressures _P1 and

2 .

Before procedlng with the calculation, we outline the

work. First the positive Jacoblan condition is (4.1a). Sub-

stituting the deformation (4.1) into the three equilibrium

equations of the non-linear theory, we obtain one ordinary

second order differential equation for f . The general

solution of this equation is linear in the constants off

Inte3ration A and B (see (4.15)).
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Using the stress-straln laws of the non-llnear theory,

the condition that hydrostatic pressures of _P1 and _P2

are applied on the curved lateral boundaries reduces to two

linear equations, (4.21), in A and B . We want the deter-

minant D oC this system off equations to be non-zero in or-

der that A and B are determined uniquely. Since D _ 0

when E = P1 = P2 = 0 and r 2 _ r I , we make the requirement

D • 0 for all values of E,P1,P2,r l, and r 2 considered.

This is (4.23).

Assuming D _ 0 , then (4.1a) implies (4.25) and (4.26)

where k = rl/r 2 . Conversely, D • 0 , (4.25), and (4.26)

all together imply that the Jacobian is positive. These

conditions are summarized in (4.27), and, when the parameters

_,PI,P2, and k satisfy (4.27), there is a unique f such

that the deformation (4.1) satisfies all the conditions we

have imposed.

We want to be able to build the pre-stressed ring be-

fore we apply the hydrostatic pressures to the curved lateral

surfaces. That is, we want (4.27) to be satisfied when

P1 = P2 = 0 . This gives (4.28) as a new restriction on

and k . (4.28) is always satisfied if E • 0 , i.e. if the

ring is pre-stressed by deleting a wedge. But if -I < e _ 0 ,

(4.28) is not satisfied unless k is near enough to one.

That is, the ring can not be pre-stressed by inserting a wedge

unless the ring is thin enough.
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Once e and k are chosen so that (4.28) is satisfied,

then (4.27) becomes restrictions on the hydrostatic pressures

only. For the values of P1 and P2 satisfying (4.27)

there is a unique f such that (4.1) satisfies the equilibrium

equations, the boundary conditions, and the positive Jacobian

condition.

Since (4.28) is always satisfied when e _ 0 and

0 _ k _ 1 , we can take limits as r I --* 0 in the pre-

stressed ring if the pre-stressing is done by deleting a wedge.

Since (4.28) is not satisfied when -1 _ e _ 0 unless k is

near enough to one, we can not take limits as r I --* 0 in

the pre-stressed ring if the pre-stresslng is done by inserting

a wedge. We do not discuss the problem of taking limits as

r I --* O if the pre-stressed ring is first loaded further

by takin_ P1 or P2 _ 0 . That problem could be solved by

further study of (4.27).

The surface traction vector acting across a plane through

the axis of the ring is derived and is observed to be normal

to the deformed plane. Its magnitude is _T where T is

given by (4.30). It is shown that lim T(r l) = -I when
rl-_ 0

e _ 0 , so that this force has a finite limit when we can

let rl m_ 0 .

We now present the details oC the work. The Jacobian

of (4.1) is l__+_ ff' . Since we are restricting _ so that
r

e _ -1 , the positive Jacobian condition implies f and f'

are not zero and have the same sign. Since f is the distance
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from the axis off the deformed ring to a particle in the ring,

we have f _ 0 . Hence the positive Jacobian condition becomes

(4.1a) f _ O, f' _ 0 for r I _< r _< r 2 .

We make the identification e 1 = r,e 2 = s,e 3 = z .

,ooo_ ' iN) lNJ
0

Then

(4.2)

I cos e sin e 0

i sin e I
= - _ _ cos e 0

0 0 I

A
Since (gij) = _jjj \_)ej]

•

and (glJ) (gij) -I

(4.3) (gij) ( 00/ Ii= r2 0 , (gij) =

0 1

0

1
--2
r

0

0t0 ,

1

2
g = r.

The non-zero Chrlstoffel symbols are

(_.4)
2 2 I I

F' 12 = P 21 =_' V 22 = -r.

Hence
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(4.5)(Pij)= (uilj

/_u I _u I _l_
_-r Z_- - ru2

_u 2 1 u 2 3u 2 1 1 3u 2
)= ZT+- +-u

and

(4.6)

AlJlj

A2Jlj

A3Jlj

_A lj I All rA22

3oj r

bA2J
+ ! (A 12 + 2A 21)

3ej r

8A3J

3ej
1 A31

+_

for any contravarient tensor

From (4.1) and (4.2)

A ij .

(4.7) u I = f cos ee, u 2 _ _ sin ee, u 3 = Z .
r

From (4.5) and (#.7)
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(4.8)

fI__ cos e8
(pij) = sin e8

0

(I+_) _ cos _e

0

cos _e -(l+e) _ sin ee
r
f

sin _e (I+¢) r-3 cos eo

0 0

For a plane strain deformation the rotation matrix c

has the form

c

cos _ -sin _
=_Sion _ cos'_

• 0

where _ is the local rotation angle.

we obtain

Using this with (4.2)

(4.9)

Ir c°s
(Cij) = sin

0

-r sin

r2 cos

O

O10
1

From (4.9) and (4.8)
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I f, cos (_-ee)
(4.10) (CkiPkj)= rf' sin (%-ee)

0

(l+e)f sin (%-ee) O_

(l+E)rf cos (_-Ee) _I0

Since (3.5) determines the quantities Cij uniquely, we

see from (4.9) and (4.10) that it suffices to choose @ = 6e .

Then (CkiPkj) is symmetric and positive definite by (4.1a).

Hence

cos Se -r sin ee 0

J
) Cij) =_ s_n eO r2 COSo eO Ol

(4.11 / 1 sin _8cos ee -

_ciJ)=(gikgJ_Ck_)= Isin ce _ cos Ee

0 0

!I
From (4.10) and (3.6)

f'-I 0 il

(Eij) = 0 (l+elrf-r 2

o 0

(4.12) I
f 2

k f' + (l+e) rE k = ---

From (3.3) and (3.8) the equilibrium equations are
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(4.13) Ek lJ _piJ
()_ k" _)C lj + lj

- 0 .

From (4.6),(4.8), and (4.11)

(4.1_)

"plJtj = [f,, i l+s )2f] cos _e+_f'- (_

1 A f,_(P2JlJ = _ If" + r I+___)_f]sin _e

P3Jlj = o

cIJ E cos Eelj= -_

c2Jlj = - r_ sin _e

c3Jlj = O

Substituting into (4.13) from (4.12) and (4.14), only

one differential equation for f is obtained, namely

1 f, _ ( I+¢ )2f =_ E
f" + _ -7- (i-(T )r

where _ is Poisson's ratio.

The general solution of this equation is

(4.15) f = (2+s)(l-_)

where A and B are constants of integration.

From (4.15) and (4.12)
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(4.16)

'[(2+m)(l-_') I + (I+¢) Ar m . B

k 2A(I+e) r e
Ek = (2+e)(IL_) -

On the boundaries r = rl,r 2 we have

dS = rdedZ . On r = r2 we have n I

n3 = 0 so that N 1 = 1,N 2 = N3 = 0 .

NI = -I,N 2 = N 3 = 0 .

d_ = (l+e)fdedZ and

= cos 8,n 2 = sin @,

Similarly on r = rl,

Therefore from (3.4)

(4.17) T i
T i

r Qil
for r = r I

r Qil
= (l+e) f for r = r2

The unit outer normal vectors to the deformed boundaries

r = rl,r 2 are _ (cos (l+e)e,sin (l+e)e,O) respectively.

Hence the requirement that hydrostatic pressures of 9_P 1 and

2_P 2 act on r = rl,r 2 respectively are

(tl,t2, t3) = _Pl(COS (l+_)8,sin (l+e)e,O) for r = rI and

(tl,t2,t 3) = -_P2(cos (l+e)e,sln (l+_)e,o) for r _ r2 .

From these conditions and (4.2)
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(4.18)
T3

T 1

= _PI cos ee

_PI

= _ sin ¢e

= 0

-_P2 cos ee

T2 "_P2- sin Ee
r

T 3 = 0

> for

for r = rI

r=r 2

Thus (4.17) and (4.18) together with (4.15) give

(4.19)

QII = E(I+¢)Pc_ <I _)- (2+el(l- _-2) +Are+ B cos ee

Q21 = E(I+e)P -

- (2+ei(l'6r2i /l+Ar e+ --_+e_ I sin ¢e

Q31 = 0

_for r=ra(c=l, 2)

where E is Young's modulus.

From (3.8),(4.8),(4.11), and (4.16)
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(4.20) <

Qll = E(l+e) [ .1 + A r_ B ](2+e)(l- _21 _ - _ COS eO

Q21 [ B ]I(2+_)(1- _2) -1 + _ r e - sin EO

Q31 = 0

Hence (4.19) and (4.20) give

(I-Pa)B(4.21) (Pa + )Ar_ - "2+6 = I - Pa for a _ 1,2

r_

The determinant D of coefficients of the system of

equations (4.21) (considering A and B as unknowns) is

(4.22)

= P2 + _i__)(l l_Pl)r22+28

- (PI +
1 _ , 2+281

)(1-t'21rl ]

In order that A and B are uniquely determined we

require D _ 0 . When 6 = PI = P2 = 0,D _ 0 since r 2 > rI •

In order that we can deform continuously from the unstressed

ring to the stressed ring having A and B always uniquely

determined, we must therefore require that D > 0 for all

r 1

P1,P2,E > -1, and r-2 considered. This restriction is
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From (4.21)

(4.24)

= _(I-P I) (I-P 2)

We have yet to impose

and (4.24) (2+a) (I- 6=)rlf(r I)

the conditions (4.1a). From

2 2+E B

= rl+Ar I +

and (2+¢)(l-O')r2f(r 2)

= ]) II_(I-PI) -1 . Since e > -I,0 < 0- < _'i

r I < r 2, and' D > 0 , then f(r) > 0 for r I _< r _< r2

implies the restrictions

(#.15)

(4.e5) PI < I , P2 < I •

and

r1
Let k = -- so that 0 < k < I . From (4.16),(4.22)

r 2

(4 24) (2+¢)(l.0_)r_f_(rl) __ rl2+(l+_)(Ar2+__ B )
• 1 r_

=D

+(l+e)(l-P I)(I-P 2)(l-k 2+_)}, Hence f_(r I) > 0 implies
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(4.26)

(p2+_w)(l_Pl)(2+6)k-$.(pl + 1_-2/-_)(l-P2)(k2+e+l+e)

+(I+E)(I-PI)(I-P2)(I-k 2+E) > 0 .

So far we have shown that (4.25) and (4.26) are necessary

for (4.1a) when (4.23) is imposed. We now show that (4.23), (4.25_

and (4.26) are sufficient. Inequality (4.26) gives f'(r I) > 0

as already shown. But (4.23),(4.24), and (4.25) imply A > 0 so

that f'(r l) > 0 and (4.16) gives

2+¢ 2+¢

B < rl . 2+2¢< +Ar2+2¢ _ _ B_+'/-/'6-+Arl _ _ ,i+(i+_) Ar¢ _ 0 _

and

P2

f(r) • 0 for rl< r < r2 .

Using (4.25), we can rewrite (4.23),(4.25), and (4.26) as

f'(r) > 0 all for r I _< r_ < r2 . We have already restricted

so that f(r l) > 0 . This with f'(r) > 0 implies that

(4.27)

P1 < I, P2 < i

1
P2 + _-_

l_P2 -

1

P1 + _ ke+2e

1

P2+ (2+¢)k-¢
1-P 2

1

P1 +-_ (k2+¢+l+¢)_(l+¢)(l_k2+¢).

1-P 1

In order that we can pre-stress the ring before applying

hydrostatic pressures, we want (4.27) to be valid for

P1 = P2 = 0 . This gives the additional restriction

(4.28) (2+¢)k -6 > [I+(I+¢)(I-2_)]k2+¢+2_(i+¢) .
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To see if (4.28) is trivial, we let

g(k) = [l+(l+e)(l-9_T)]k2+e+20-(l+e)-(2+e) k-e for 0 < k < i,

• -1 . Then (4.28) becomes g(k) • 0 • First consider the

case E • 0 . Then g'(k) = (2+E){[l+(l+e)(l-2 _)]k I+_

+Ek-l-£_ • 0 so that g(k) is a monotonically increasing

function of k . Since also g(l-) = 0 , we have g(k) • 0

for 0 • k • I,E • O, and the restriction is automatically

satisfied.

Now consider the case -1 • e • 0 . Then

g,, (k): • o . Hence

g'(k) is a monotonically increasing function of k for

0 • k • 1 . Since g'(0+) = -co and g'(l-) = 2(2+_)(1+s)(i-_)•0,

there is a unique _ such that 0 • _ • 1 and g'(k) • O for

0 • k • --k,g'(k) • 0 for k • k • 1 . Hence g(k) has a minimum

at k = k and is monotone in the intervals 0 < k < k,k • k • 1 .

and g(O+) = 20-(i+a) • 0 , there is a unique k

• _ and g(k) • 0 for 0 • k • k ,g(k) • 0

Since g(l-) = 0

such that 0 • k

for k < k • 1 .

Hence (4.28) is trivial for E • 0 , but when -I • E • 0 ,

(4.28) is not satisfied if k is too close to zero. In other

words our criteria always permit pre-stressing the ring by delet-

ing a portion and welding the ends together; but they do not per-

mit pre-stressing by adding a piece unless the ring is thin

enough. Thus if e • 0 , we can not let rl--_ 0 after fixing s.

After fixing _ and k so that (4.28) is satisfied, we may

regard (4.27) as restrictions on P1 and P2 alone.
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Since (P + _-_)/(1-P) is a monotonically increasing

function of P for P • 1 , if _l and _2 are any values
^

of P1 and P2 satisfying (4.27), then _l and P2 also

satisfy (4.27) for all
A

P2 such that _2--_ P2 • 1 . Also

as P1 --_l- , we must have P2--_ l-

and P2 satisfy (4.27). Hence in the

in order that P1

PIP2 - plane, (4.27)

is satisfied in a region of the type shaded in Figure 1.

This completes the proof that the transformation given

by (4.1),(4.15), and (4.24) satisfies the equilibrium equations,

boundary conditions on r = rl,r 2, the positive Jacoblan

condition, and that it is possible to deform continuously

from the case P1 = P2 = 0 to the case P1 _ 0 or P2 _ 0

holding E fixed provided that P1,P2,_ _ -1, and k satisfy

(4.27) and (4.28).

Before proceding it is interesting to note what would be

obtained if we had not required that it be possible to go from

the unstressed ring to the stressed ring with f determined

uniquely at each step. When D = 0 , equations (4.21) do not

have a solution unless P1 = P2 = 1 and in that case there is

a one parameter continuum of solutions. When D • 0 , A

and B are given by (4.24), but now the conditions f(r I) _ O,

f(r 2) _ 0 imply P1 _ l'P2 _ 1 . Hence in the PIP2 - plane,

the regions corresponding to solutions with D _ 0 and D _ 0

meet only at the point P! = P2 = 1 . Hence it is not possible

to go from solutions with P1 _ I'P2 _ 1 to other solutions

varying P1 and P2 continuously unless we go through the
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P2

(I,1)

/

Figure I

/
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point P1 = P2 = 1 where the solution is not uniquely determined.

The case P1 = P2 = 1 does not correspond to a buckled solution

in the usual sense of the term since a continuum of solutions

is possible when P1 = P2 = 1 .

Proceding with the solutions we are admitting, we next

show that the surface traction vector on e = al,a 2 is

normal to the deformed surfaces. On e = a 2 we have

dS = drdZ,d_ = f'drdZ, and n = (-sin e,cos e,O) . Hence

N1 = N 3 = O,N 2 = r, and T i = QIJNj _, = _ Qi2 from (3.4).

Using (3.8),(4.8),(4.11),(4.15), and (4.16), the preceding becomes

(4.29)

/T I = -2_T sin Ee

T 2 = _T cos ee
r

T 3 = 0

whe re

(4.30) T(r)

A r E B i
1-20-- + _

B 1 ¸
Ar E _ _ + _-$-_

r

is

Using (4.29) and (4.2), the surface traction vector _

= 2_T(-sin (l+_)e,cos (l+E)e,o) = 2_T _ where _ is

the unit outer normal vector to the deformed surface. Hence

the surface traction vector is normal to the deformed boundary
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and _T is the normal component of stress on the deformed

boundary e = _2 "

A similar argument is valid for the boundary e = _I "

We have yet to show that lim T(rl) is finite when the

rl_ 0

ring is pre-stressed by deleting a wedge (i.e. when e _ 0,

P1 = P2 = 0). Actually we will show that llm T(r I) is
rl-_0

finite whenever we can let rl--_ 0 while holding a'PI'

and P2 fixed. We have already shown that we can let

rl---_ 0 while holding E fixed positive and P1 = P2 = 0 .

Determining which other values of e,P l, and P2 can be

used in this limiting operation would require further study

of the inequalities (4.27).

For convenience let

1
P_ +I_-T_C

(4.31) Co = I-P ' _ = 1,2

From (4.22) and (4.24)

(4.32)

D

B

E
r2

(c2-cik2+2 )(l-PI)(I-P2)

l-k 2+_ 1

C2_Cik2+2_ Er2

Clke-C2 2+s

r 1
C2-CIk2+2E
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(4.33)

Substituting into (4.30) from (4.32)

r  Cl-k2+  +clk c2-r + Cc2clk2+2 l
1

T(r I) = ke(l_k2+_)_Clk_+C2+ _-_-{(C2-Ci k2+2e)

Hence

(4.34) lim T(r I)

rl->O

I i+ci(i$20-)

:
I-i if e > 0
L

if -i < e < 0

Since the stress is _T, we see that these limits are

very large.

5- The Pre-Stressed Circular Plate under

Hydrostatic Pressure (Non-Linear Theory).

Consider the part of a circular plate which in the undeformed

state occupies the region 0 _< r_ < R,el_ e_< e2,1Z I _< h . We

ask if for each choice of the constants e • -1,P,R there is a

function f(r) independent of e I and e 2 such that the

deformation (4.1) has positive Jacoblan except at isolated points

or curves and satisfies the equilibrium equations with a hydro-

static pressure of 2_P applied to the boundary r = R . Again

the answer is yes under suitable restrictions, and the force

vector on the surfaces e = Cl,C 2 is normal to the deformed

surfaces so that stressed circular plates can be formed Just as

for the circular ring case.
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The differential equation for f is the same as in the

circular ring case so that f is given by (4.15). However,

since in this case we want f to be finite for r = 0 , we

must take B = 0 . Then (4.16) also remains valid for B = 0 .

The consideration of boundary conditions is similar to

that of the ring case and the equation for A is

(5.1) 1 )AR e I-P(P +_ =

-i
This has a solution only if P _ i--_ " The require-

ment that we can go continuously from the case _ % O,P = 0

to the case e _ O,P _ 0 by varying P continuously while

holding E fixed is

(5.2) p > -I

Then

(5.3) <

r o

A=

f(r) =

I-P R-e
1

P+

(2+a) (i- 0-) p+

f'(r) 11 P(2+E) (I-0" ) I'_ + ......1
P+



29

The positive Jacobian requirement is

f'(r) • 0 for 0 _ r < R which gives

f(r) > 0 and

f

P < i for E _ 0

(5.4)

i I-P • 0 for m • 0

P+ T_

Hence it is always possible to go continuously from the

pre-stressed plate to the pre-stressed plate under pressure

9_P by continuously changing P . That is for the circular

plate we can always build the pre-stressed plate first and then

load it by applying pressure.

Defining T(r) as before we have

by letting B=O in (4.30). Hence

T(r) =

A r E- i
T_

i
Are+

(5.5) llm T(r)
r-• 0

-I if E • 0

i
if -I _ e < 0

In any case lim T(r)
r-•O

exists and is finite.

Let

their products can be neglected.

6. The Pre-Stressed Ring under Hydrostatic

Pressures (Linear Theory).

f = r + F and assume F and c are so small

Then (4.1) becomes
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(6.1) _i = (r+F)c°se-eresine'_2 = (r+F)sine+erec°se'_3 = Z .

We will show that F can be chosen so that (6.1) is an

exact solution to the ring problem using the linear theory

provided only that lel,IPll, and IP21 are small enough.

The rectangular components of displacements are

(6.2) _l-Xl = Fcose-_reslne,_2-x 2 = Fslne+Erecose,_3-x 3 = O .

Letting the quantities vi be the cylindrical components

of the contravarient displacement tensor, we have from (4.2)

and (6.2)

(6.3) v I = F,v 2 = ee,v 3 = O .

Hence (4.5) and (4.3) imply

(vllj) - _e _+._ F

0
iFi- - rilee _: I

V+V
0

Let E i__ be the cylindrical components o£ the contra-

varlent linear strain tensor so that E ij = ½(vilJ+vJli).

Then



' 0

¢ i
(6._) (Elj) = _ + _ F

O
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The cylindrical components of the contravarient stress

tensor are xlJ = _E_giJ + _EiJ so that the equilibrium

equations $iJlj = 0 become

8Ek gij = 0

(6.6) _ _ + mEi_lj

But from (6.5) and (4.6)

I I

Ek=F ' +_F+E

= IF,_I F
(6.7") ElJ(j F" + r V "

= E3J I = 0
E2Jlj j

Hence the only non-trlvlal equilibrium equation is

1 F' 1 1-2cr
F" + _ - --_ F = i-_ r , and the general solution

r

is

1-20-
(6.8) F = 2(l-er) _r log r + Ar + Br

From (6.8)



32

1-20- B

F' = 2(i _) c(log r + 1) + A ---a
r_

(6.9)

k I-2_E = 2(i-_-) ¢(2 log r + i) + 2A + ¢

_iI ¢ (log r + 1-0" A= 2(i-6-) _ ) +Ii-_

B

r

v21 = _31 = 0 .

and

for

become

The boundary conditions are

xiJNj = -9_PINi for r = r I • Since

r = r 2 and N 1 = -1,N 2 = N 3 = 0 for

xiJNj = -2_P2Ni for r = r 2

N I = I,N 2 = N 3 = 0

r = rI, these

r = rc(a = 1,2). Hence_ii = _9_pa,_21 = _31 = 0 for

(6.10)
B -_ I-_-
---,2= _ (log r + _ ) - Pa, a = 1,2

r(_

The unique solution to (6.10) Is

(6.11)

IA 1-20_ k21°g rl-l°g r2= " _ + 2(l-d') E l_k2 +

B _ 2(1-0-)

The positive Jacoblan condition is (I+F')(I+ _ + a)+¢292>O.
r

F
For this to be true for e = 0 we must have (I+F')(I+ _ + ¢) _ O.

F
This means that l+F' and I+ _ + e are not zero and have the

same sign. When r I and r2 are fixed and lel,IPll , and IP21

are small enough, both quantities are positive. Since we want

to admit all small enough IEI,IPII, and IP21, we must require
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(6.12)
F

i+_+¢'0

LI+F'>O

for all E,PI,P2,r I, and r2 admitted.

From (6.8),(6.9), and (6.11) we obtain

F(rz)

rI

E
_+ l_k+

1-k

{I-2_)(k2PI-P2)+PI-P2

l_k 2

0-
F' (r I) . -k-Z---_ e I--_ __ (I'2J-)(k2PI-P2)-PI+P2

+ +

1-k ] l_k 2

Hence
F(r 1)

lim

rl-> 0 rl

when a < 0 .

= -oo when e > 0 and lim F'(r I) = -_

rl->O

Hence (6.12) does not permit taking limits as

rl--_ 0 when e,PI,P 2, and r2 are fixed, and we can not

make comparisons with such limits taken in the non-llnear theory.

On the surface 8 = c2,Nl = N 3 = 0 and N 2 = r . Hence

Ti = viJNj = r_i2,T 1 = T 3 = O,T 2 = rv 22, and the surface traction

vector is normal to the undeformed surface. Defining T by

= r T 2 r2 _22
T i 2_TN i, we have T = ]_ = ]_i and

T(r) = e _l+log r+2(i- _ )

r2(k21og rl-lOg r2)+rl21og

r (1-k2) k}

(6.13)

r2( k2PI-P 2) +r_(PI-P2)

+ .......... r2 (_ 'k2)
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To conclude we observe that if f-_,f'-l, and T(r) ,

as computed from the non-llnear theory in section 4, are

expanded in power series in E,PI, and P2 ' the terms up

to first order give exactly the values of F,F', and T(r)

computed here with the linear theory. The important differ-

ences between the results of the two theories is due to the

approximation r e = 1 + e log r . This approximation is

arbitrarily good for [el small enough provided that

0 < r I _ r _ r 2 where rl,r 2 are fixed; however, for

fixed the approximation becomes arbitrarily bad as r--> O.

Hence we do not expect agreement between the linear and

non-llnear theories when rI is small enough if r2, e,P1,

and P2 are fixed.

7. The Pre-Stressed Circular Plate under

Hydrostatic Pressure (Linear Theory).

Again we consider the deformation (6.1). The differential

equation for F is the same as before so that (6.8) is the

general solution. Requiring F to be finite for r = 0

gives B = 0 . The boundary condition is (6.10) with

B = 0 and ra and Pc replaced by R and P . Hence

(7.1)

I-2_-

A = - _ - 2(1-6-)

F E I-2_-

F rL - + 2(l- J

F' 2(If_) _

e log R - P(I-2G-)

e log _ - P(I-20-)J

1-20"

+ 2(i-0") ¢ log r _ P(I-20-)J[%
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Conditions (6.12) apply for 0 < r • R. From (7.1)

1-20"1 + Fr + e = 1 + + 2(1-0-) e log - P(I-26-) ,

1-20-1 + F' = 1 - 2(l_i__) e + 2(1-_) e log - P(I-2o _)

Since these are monotone functions of r, (6.12) is equivalent to

requiring these expressions to be non-negative for r = O" and

positive for r = R . Hence

(7.2)
E • 0

e < 2(i-6-) [I - P(I-20-)]

e > 2[P(I-2 5-)-1]

Thus the pre-stressing can not be done by deleting a wedge (E>0).

Observe that whenever IPI is small enough there exists e

values satisfying (7.2) .

.r2 22 .r 2For T = = E k 22 9#E22X kg + ] we have

(7.3)
e r

T = -P + 2(1-0-) (i + log _ )

Thus T has a singularity at the origin although it does not in

the non-linear theory.

Again the results of the non-llnear theory agree with the

results of the linear theory to first order terms in e and P, and

the differences in the results of the two theories is due to the

approximation r e = 1 + e log r .
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